一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

Anti-EV71 polyprotein 3D/Biotin

货号: bs-2339R-Bio 基本售价: 2980.0 元 规格: 100ul

产品信息

产品编号
bs-2339R-Bio
英文名称
Anti-EV71 polyprotein 3D/Biotin
中文名称
生物素标记的肠道病毒71型/手足口病病毒抗体
别    名
3D polymerase; Human enterovirus 71 polyprotein 3D; EV71; Enterovirus 71.  
规格价格
100ul/2980元购买        大包装/询价
说 明 书
100ul  
研究领域
细胞生物  免疫学  细菌及病毒  
抗体来源
Rabbit
克隆类型
Polyclonal
交叉反应
enterovirus71
产品应用
ELISA=1:100-1000 IHC-P=1:50-200 IHC-F=1:50-200 ICC=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量
351kDa
性    状
Lyophilized or Liquid
浓    度
1mg/ml
免 疫 原
KLH conjugated synthetic peptide derived from EV71 polyprotein 3D
亚    型
IgG
纯化方法
affinity purified by Protein A
储 存 液
0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存条件
Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
产品介绍
background:
Enteroviruses, such as enterovirus 71, are classified to be in the picornavirus family, pico [small] + RNA [ribonucleic acid] + virus. Picornaviruses are among the smallest and simplest ribonucleic acid containing viruses known (1). The RNA for many enteroviruses have now been cloned and complete genomic sequences have been obtained. The RNA from all sequenced enteroviruses are similar in length, about 7400 nucleotides, and have identical organization (1). The human alimentary tract is the predominant site of enterovirus replication and these viruses were first isolated from enteric specimens. These viruses are the cause of paralytic poliomyelitis, aseptic meningitis-encephalitis, myocarditis, pleurodynia, hand-foot-and-mouth disease, conjunctivitis, and numerous other syndromes associated with extra-intestinal target organs. There are 67 numbered types of enteroviruses in the enterovirus family (1): three polioviruses, twenty-three coxsackieviruses A, six coxsackieviruses B, thirty-one echoviruses, and four other enteroviruses.

Function:
Protein VP1: Forms, together with VP2 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Protein VP1 mainly forms the vertices of the capsid. VP1 interacts with host cell receptor to provide virion attachment to target cell. After binding to its receptor, the capsid undergoes conformational changes. VP1 N-terminus (that contains an amphipathic alpha-helix) is externalized, VP4 is released and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks.
Protein VP2: Forms, together with VP1 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and
Protein VP3: Forms, together with VP1 and VP2, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome.
Protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. VP4 is released, VP1 N-terminus is externalized, and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks.
Protein VP0: Protein VP0: VP0 precursor is a component of immature procapsids, which gives rise to VP4 and VP2 afer maturation. Allows the capsid to remain inactive before the maturation step.
Protease 2A: cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factor EIF4G1, in order to shut off the capped cellular mRNA transcription (By similarity).
Protein 2B: Affects membrane integrity and cause an increase in membrane permeability.
Protein 2C: Associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities.
Protein 3A, via its hydrophobic domain, serves as membrane anchor. It also inhibits endoplasmic reticulum-to-Golgi transport.
Protease 3C: cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind cooperatively to the protease.
RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals.

Subunit:
Protein 2C N-terminus interacts with human RTN3. This interaction is important for viral replication.

Subcellular Location:
Protein VP2: Virion. Host cytoplasm (Potential).
Protein VP3: Virion. Host cytoplasm (Potential).
Protein VP1: Virion. Host cytoplasm (Potential).
Protein 2B: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.
Protein 2C: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.
Protein 3A: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.
Protein 3B: Virion (Potential).
Protease 3C: Host cytoplasm (Potential).
RNA-directed RNA polymerase 3D-POL: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

Post-translational modifications:
Specific enzymatic cleavages in vivo by the viral proteases yield a variety of precursors and mature proteins. Polyprotein processing intermediates such as VP0 which is a VP4-VP2 precursor are produced. During virion maturation, non-infectious particles are rendered infectious following cleavage of VP0. This maturation cleavage is followed by a conformational change of the particle.
VPg is uridylylated by the polymerase and is covalently linked to the 5-end of genomic RNA. This uridylylated form acts as a nucleotide-peptide primer for the polymerase.
Myristoylation of VP4 is required during RNA encapsidation and formation of the mature virus particle.

Similarity:
Belongs to the picornaviruses polyprotein family.
Contains 2 peptidase C3 domains.
Contains 1 RdRp catalytic domain.
Contains 1 SF3 helicase domain.

Database links:
SwissProt: Q66478HE71B


Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.