一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

MOUSE ANTI MHC CLASS II H-2I-Ak/s:RPE

货号: MCA2687PEB 基本售价: 5853.0 元 规格: 500 TESTS

产品信息

概述
货号MCA2687PEB
克隆号OX-6
同种亚型IgG1
反应种属Rat
来源宿主Mouse
应用F
性能
供应商Bio-Rad Antibodies
溶解方法Pack Size: 100 TestsReconstitute with 1 ml distilled waterPack Size: 500 TestsReconstitute with 5.0 ml distilled water
运输条件
存放说明Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Prior to reconstitution store at +4oC. Following reconstitution store at +4oC.

DO NOT FREEZE.

This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.Prior to reconstitution store at +4oC. Following reconstitution store at +4oC.

DO NOT FREEZE.

This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
声明
本官网所有报价均为常温或者蓝冰运输价格,如有产品需要干冰运输,需另外加收干冰运输费。
参考图片
Staining of rat spleen cells with Mouse anti H-2I-Ak/s (MCA2687GA)
Staining of rat spleen cells with Mouse anti H-2I-Ak/s: Alexa Fluor® 647 (MCA2687A647)
Staining of rat spleen cells with Mouse anti H-2I-Ak/s: Alexa Fluor® 488 (MCA2687A488)
Staining of rat spleen cells with Mouse anti H-2I-Ak/s: FITC (MCA2687FA)
Staining of rat spleen cells with Mouse anti H-2I-Ak/s: FITC (MCA2687FB)
Staining of rat spleen cells with Mouse anti H-2I-Ak/s: RPE (MCA2687PE)
Published customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used for the identification of MHC class II expressing rat retinal microglia by immunofluorescence on cryostat sections.
Image caption:
Activation of microglial cells. Vertical section of retinas from a SD (A-C), untreated P23H (D-F) and tauroursodeoxycholic acid (TUDCA)-treated P23H (G-I) rat stained for Iba1 (green; A, D, G) MHC-II RT 1B (red; B, E, H) or both (C, F, I). Nuclei stained with a nuclear marker (TO-PRO 3, blue). All images were collected from the central area of the retina, close to the optic nerve. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Scale bar: 20 μm.

From: Noailles A, Fernández-Sánchez L, Lax P, Cuenca N. Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects.
J Neuroinflammation. 2014 Oct 29;11(1):186.
Published customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used for the identification of MHC class II expressing mictoglial cells in rat brain by immunohistochemistry on gormalin fixed cryosections.
Image caption:

Visualization of microglia in midbrain with GSA-I-B4 lectin (A-F) and in motor cortex with OX-42 (G) and OX-6 (H) during symptomatic disease. A, low power view of midbrain reveals enhanced lectin staining in the red nucleus. B, higher magnification shows that enhanced lectin reactivity is confined strictly to red nucleus region (arrows indicate perimeter of red nucleus). C, microglial fusions are interspersed with rubrospinal neurons that appear undamaged. D, lectin-positive microglial fusion (giant cell) within red nucleus. E, oculomotor nucleus reveals normal-appearing motor neurons and lack of microgliosis. F, substantia nigra (pars compacta) shows presence of normal, ramified microglial cells. G, motor cortex shows normal, ramified microglia. H, single, ramified microglial cell positive with OX-6 (arrow) near lateral ventricle. Scale bars: 400 μm (A); 200 μm (E); 100 μm (B,H); 50 μm (C,F,G); 20 μm (D).

From: Fendrick SE, Xue QS, Streit WJ. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene.
J Neuroinflammation. 2007 Feb 28;4:9.
Published customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used for the identification of MHC class II expressing cells in the rat brain by immunohistochemistry on formalin fixed, paraffin embedded tissue sections.
Image caption:
Representative images of (immuno)histochemical staining of brain tissue (TBI and control) with ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B ten days after the microdialysis experiment.

From: Folkersma H, Foster Dingley JC, van Berckel BN, Rozemuller A, Boellaard R, Huisman MC, Lammertsma AA, Vandertop WP, Molthoff CF. Increased cerebral (R)-[(11)C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation. 2011 Jun 14;8:67.
Published customer image:Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used for the visualization of MHC Class II expressing cells in Rat brain by immunohistochemistry on formalin fixed coronal tissue sections.
Image caption:
Progressive degeneration of the nigral dopaminergic neurons after intrastriatal LPS. (A) Representative TH immunostaining of coronal midbrain sections demonstrates that the numbers of TH-positive neurons and fibers in the substantia nigra pars compacta are gradually reduced by intrastriatal LPS injection. Note that TH-positive neurons in the medial substantia nigra pars compacta and ventral tegmental area are spared; scale bar: 200 μm. (B) Stereological cell counts of the TH-positive neurons in the substantia nigra pars compacta (n = 5–6/group, ** p<0.01, *** p<0.001). (C) The substantia nigra pars compacta is outlined with an orange dashed line (top). High magnification image of Nissl stainings suggest loss of the nigral dopaminergic neurons, at four weeks following LPS injection (bottom); scale bar: 200 μm. (D) Silver staining is hardly seen in the substantia nigra ipsilateral to vehicle treatment. However, abundant silver grain-deposits are observed in the neurons (arrows) and fibers (arrow heads) in the substantia nigra ipsilateral to the intrastriatal LPS injections, indicating there is ongoing neurodegenerative process in the region. Scale bar: 20 μm.

From: Choi D-Y, Liu M, Hunter RL, Cass WA, Pandya JD, et al. (2009) Striatal Neuroinflammation Promotes Parkinsonism in Rats.
PLoS ONE 4(5): e5482.
Published customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used for the evaluation of MHHC class II reactivity in rat brain be immunohistochemistry on coronal sections.
Image caption:
OX-6 IHC staining in the DG. No OX-6 positive cells were identified in P1 D1D2 pups treated with either NS (a) or Dex (b). Brain tumor implant staining as a positive control showed OX-6 positive cells stained brown (c), arrow). Magnification, 400x; scale bar, 50μm.

From: Sze CI, Lin YC, Lin YJ, Hsieh TH, Kuo YM, Lin CH. The role of glucocorticoid receptors in dexamethasone-induced apoptosis of neuroprogenitor cells in the hippocampus of rat pups.
Mediators Inflamm. 2013;2013:628094.
Published customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used for the evaluation of MHC class II expression in the rat brain of transgenic rats by immunohistochemistry on cryostat sections.
Image caption:
Expression of MHC class II molecules is different in brains of transgenic rat models. In brainstem of WKY TG rats (A), activation of microglia is accompanied by widespread MHCII expression, while in SHR TG (B), only sparse MHCII staining was recorded. Stereological quantification shows highly significant differences between the transgenic lines. In WKY TG rats, there are 10 times more microglia that express MHCII than are present in SHR TG rats (C, Student's t-test, *** p < 0.001). Pre-fixed frozen sections. Scale bars: 50 μm.

From: Stozicka Z, Zilka N, Novak P, Kovacech B, Bugos O, Novak M. Genetic background modifies neurodegeneration and neuroinflammation driven by misfolded human tau protein in rat model of tauopathy: implication for immunomodulatory approach to Alzheimer's disease.
J Neuroinflammation. 2010 Oct 12;7:64.
Published customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX6 used for the identification of activated microglia in rat brain be immunohistochemistry on formalin fixed cryosections.
Image caption:
Neuroprotection against 6-OHDA toxicity following delayed subchronic intranigral administration of 2R,4R-APDC is associated with reduced numbers of activated microglia in the SNc. Representative photomicrographs (40) of DAB/peroxidase staining for OX-6, a marker of activated microglia in the SNc from each treatment group (scale bar 200μm.). (a) 6-OHDA + vehicle, unlesioned SNc, (b) 6-OHDA + vehicle, lesioned SNc, (c) 6-OHDA + 2R,4R-APDC (10?nmol) unlesioned SNc, (d) 6-OHDA + 2R,4R-APDC (10?nmol) lesioned SNc. Note the increase in intensity of OX-6 staining and the increase in OX-6+ cells displaying morphology of activated microglia in the lesioned SNc of vehicle-treated animal, which appears markedly reduced in animals treated with 2R,4R-APDC.

From: Chan H, Paur H, Vernon AC, Zabarsky V, Datla KP, Croucher MJ, Dexter DT. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease.
Parkinsons Dis. 2010 May 23;2010. pii: 190450.
Puiblished customer image:
Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used to identify activated microglia in rat brain be immunohistochemistry on formalin fixed, paraffin embedded tissue sections.
Image caption:
Imatinib reduces infiltration of immune cells and attenuates microglia activation. IHC analysis on paraffin embedded spinal cord tissue cross-sections on day 10 p.i. (A–D; n = 8 rats/experimental group; representative images shown) and 14 p.i. (E–H; n = 5 rats/experimental group; representative images shown). Although showing no sign of CNS inflammation and demyelination, control animals already started recruiting W3/13+ T-cells (B) and ED1+ macrophages (D) to the meninges and in the perivascular space, whereas the imatinib-treated group showed a delay in recruitment of inflammatory cells to the CNS. On day 14 p.i., spinal cords of the imatinib-treated rats exhibiting demyelinated lesions recruited lower amounts of W3/13+ T-cells (G, H) while ED1+ macrophages infiltration was similar to the controls (E, F). Scale bar, 200 μm (A–H). (I–Z) IF performed on spinal cord cross-sections of rats injected with fluorescent tracer (dextran, red) on day 14 p.i. α-Ox-42, ED1, Ox-6, Ox-22, CD45RA and W3/13 antibody staining (all in green) in imatinib- (I, L, O, R, U, X) and PBS-treated rats (J, M, P, S, V, Y). (I–K) Microglia activation was significantly decreased in the imatinib-treated rats, while Ox-42+ cells were detectable around leaky blood vessels (asterix) in the control tissue. (L–N) The amount of macrophages/activated microglia cells was significantly decreased in the spinal cords of the imatinib-treated rats. (O–Q) Significantly lower amounts of MHC class II+ cells were found in the meninges and parenchyma of the imatinib-treated rats vs. PBS controls. (R–Z) Significantly lower amounts of Ox-22+, CD45RA+ and W3/13+ cells were found in the meninges and parenchyma of the imatinib-treated rats vs. PBS controls (R, U, X vs. S, V, Y). Quantifications of Ox-42, ED1, Ox-6, Ox-22, CD45RA and W3/13 expression based on green fluorescent pixel area quantifications from spinal cord cross-sections (K, N, Q, T, W, Z). n = 5 rats/experimental group. Scale bar, 50 μm. Error bars, S.E.M. Statistics were calculated using t-test and P values <0.05 were considered significant (P<0.05 = *, P<0.01 = **, P<0.001 = ***). Imatinib or PBS oral gavage was performed from day 5 p.i until the end of the experiment.

From: Z. Adzemovic M, Zeitelhofer M, Eriksson U, Olsson T, Nilsson I (2013) Imatinib Ameliorates Neuroinflammation in a Rat Model of Multiple Sclerosis by Enhancing Blood-Brain Barrier Integrity and by Modulating the Peripheral Immune Response.
PLoS ONE 8(2): e56586.
Published customer image:Mouse anti MHC Class II H-2I-Ak/s antibody, clone OX-6 used to identify activated microglia in the rat hippocampus by immunohistochemistry on formalin fixed cryosections.
Image caption:
Microglial activation in response to the “Binge Drinking” regime and β-sultam supplementation. Representative microphotographs of OX-6 positive microglia in the hippocampus of binge-treated rats without (upper panels) and with β-sultam supplementation (lower panels). The micrograph shows colocalisation of OX-6 and iNOS immunoreactivities. Black arrows indicate iNOS, red arrows indicate activated microglia. b: Quantitation of microglial activation is presented. Number of OX-6 immunopositive cells (3-4 rats per group) analysed by two way ANOVA, where the two factors were Binge regime and β-sultam supplementation, followed by the post hoc Fisher's LSD (Protected t-Test) for multiple comparisons. Binge F2,14=66.24, p<0.0001; ethane-β- sultam: F1,14=14.50, p<0.0019; Interaction binge x ethane-β-sultam: F2,14=6.12, p<0.0123; post hoc Bonferroni multiple comparison test: *p<0.05, **p<0.01, ***p<0.001 versus control, #p<0.5, ##<<0.01, ###p<0.001 versus Binge alone.

From: Stefanini C, Colivicchi MA, Della Corte L, Ward RJ, de Witte P, et al. (2014) Ethane-β-Sultam Modifies the Activation of the Innate Immune System Induced by Intermittent Ethanol Administration in Female Adolescent Rats. J Alcohol Drug Depend 2:150.