产品中心
当前位置:首页>产品中心Anti-phospho-IGF1R (Tyr1161)/Cy7
货号: bs-3226R-Cy7 基本售价: 2980.0 元 规格: 100ul
产品信息
- 产品编号
- bs-3226R-Cy7
- 英文名称
- Anti-phospho-IGF1R (Tyr1161)/Cy7
- 中文名称
- Cy7标记的磷酸化胰岛素样生长因子1受体抗体
- 别 名
- IGF1 Receptor (phospho Y1161); p-IGF1 Receptor (phospho Y1161); IGF1R (phospho-Tyr1161); IGF1R (phospho-Y1161); p-IGF1R (Tyr1161); p-IGF1R (Y1161); IGF1R (phospho Tyr1161); CD221; CD221; CD221 antigen; IGF 1 receptor; IGF 1R; IGF 1R; IGF I receptor; IGF-I receptor; IGF1R; IGF1R; IGF1R_HUMAN; IGFIR; IGFIRC; IGFIRC; IGFR; Insulin like growth factor 1 receptor; Insulin like growth factor 1 receptor; Insulin like growth factor 1 receptor precursor; Insulin like growth factor 1 receptor precursor; Insulin-like growth factor 1 receptor beta chain; Insulin-like growth factor I receptor; JTK13; JTK13; MGC142170; MGC142172; MGC18216; IGF-IR.
- 规格价格
- 100ul/2980元购买 大包装/询价
- 说 明 书
- 100ul
- 产品类型
- 磷酸化抗体
- 研究领域
- 免疫学 发育生物学 信号转导 生长因子和激素
- 抗体来源
- Rabbit
- 克隆类型
- Polyclonal
- 交叉反应
- Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Rabbit,
- 产品应用
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
- 分 子 量
- 71/80kDa
- 性 状
- Lyophilized or Liquid
- 浓 度
- 1mg/ml
- 免 疫 原
- KLH conjugated synthesised phosphopeptide derived from human IGF1R around the phosphorylation site of Tyr1161
- 亚 型
- IgG
- 纯化方法
- affinity purified by Protein A
- 储 存 液
- 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
- 保存条件
- Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
- 产品介绍
- background:
This receptor binds insulin-like growth factor 1 (IGF1) with a high affinity and IGF2 with a lower affinity. It has a tyrosine-protein kinase activity, which is necessary for the activation of the IGF1-stimulated downstream signaling cascade. When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.
Function:
Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R.
When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.
Subunit:
Tetramer of 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chain carries the kinase domain. Interacts with PIK3R1 and with the PTB/PID domains of IRS1 and SHC1 in vitro when autophosphorylated on tyrosine residues. Forms a hybrid receptor with INSR, the hybrid is a tetramer consisting of 1 alpha chain and 1 beta chain of INSR and 1 alpha chain and 1 beta chain of IGF1R. Interacts with ARRB1 and ARRB2. Interacts with GRB10. Interacts with GNB2L1/RACK1. Interacts with SOCS1, SOCS2 and SOCS3. Interacts with 14-3-3 proteins. Interacts with NMD2. Interacts with MAP3K5. Interacts with STAT3.
Subcellular Location:
Membrane; Single-pass type I membrane protein.
Tissue Specificity:
Found as a hybrid receptor with INSR in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Expressed in a variety of tissues. Overexpressed in tumors, including melanomas, cancers of the colon, pancreas prostate and kidney.
Post-translational modifications:
Autophosphorylated on tyrosine residues in response to ligand binding. Autophosphorylation occurs in trans, i.e. one subunit of the dimeric receptor phosphorylates tyrosine residues on the other subunit. Autophosphorylation occurs in a sequential manner; Tyr-1165 is predominantly phosphorylated first, followed by phosphorylation of Tyr-1161 and Tyr-1166. While every single phosphorylation increases kinase activity, all three tyrosine residues in the kinase activation loop (Tyr-1165, Tyr-1161 and Tyr-1166) have to be phosphorylated for optimal activity. Can be autophosphorylated at additional tyrosine residues (in vitro). Autophosphorylated is followed by phosphorylation of juxtamembrane tyrosines and C-terminal serines. Phosphorylation of Tyr-980 is required for IRS1- and SHC1-binding. Dephosphorylated by PTPN1 (By similarity).
Ubiquitinated leading to its degradation by the proteasome.
DISEASE:
DEFects in IGF1R are a cause of insulin-like growth factor 1 resistance (IGF1RES) [MIM:270450]. It is a disorder characterized by intrauterine growth retardation and poor postnatal growth accompanied with increased plasma IGF1.
Similarity:
Belongs to the protein kinase superfamily. Tyr protein kinase family. Insulin receptor subfamily.
Contains 3 fibronectin type-III domains.
Contains 1 protein kinase domain.
Database links:Entrez Gene: 3480Human
Entrez Gene: 16001Mouse
Entrez Gene: 25718Rat
Omim: 147370Human
SwissProt: P08069Human
SwissProt: Q60751Mouse
SwissProt: P24062Rat
Unigene: 643120Human
Unigene: 714012Human
Unigene: 275742Mouse
Unigene: 10957Rat
Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.