一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

PathScan® Signaling Nodes Multi-Target Sandwich ELISA Kit

货号: 7272S 基本售价: 7898.0 元 规格: 1Kit

产品信息

概述
货号7272S
反应种属Human/Mouse
应用ELISA
目标/特异性CSTs PathScan® Signaling Nodes Multi-Target Sandwich ELISA Kit #7272 detects endogenous levels of six proteins: Akt1, phospho-Akt1 (Ser473), phospho-MEK1 (Ser217/221), phospho-p38 MAPK (Thr180/Tyr182), phospho-Stat3 (Tyr705) and phospho-NF-κB p65 (Ser536). Differential phosphorylation of these proteins can be observed over time in response to various growth factor and cytokine treatments, as shown in Figure 1.
性能
供应商CST
背景Akt is a protooncogene with a critical regulatory role in diverse cellular processes including growth, survival and the cell cycle. Akt is also a major regulator of insulin signaling and glucose metabolism (1-4). Akt is activated by PI3 kinase signaling and activation loop phosphorylation at Thr308 by PDK1 and by phosphorylation withing the carboxyl terminus at Ser473 by PDK2 (5-7). 
 MEK1 and MEK2 are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation. Activation of MEK1 and MEK2 occurs through phosphorylation of serine 217 and serine 221 by Raf-like molecules. MEK activates p44 and p42 MAP kinase (8-10). 
 p38 MAP kinase (MAPK) participates in a signaling cascade controlling the cellular response to pro-inflammatory cytokines and a variety of cellular stresses. MKK3, MKK6 and SEK (MKK4) activate p38 MAP kinase by phosphorylation at Thr180 and Tyr182 (11-14). 
 The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors. Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation and DNA binding (15,16). 
 Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammation, stress and immune responses. There are five family members in mammals: RelA/p65, c-Rel, RelB, NF-κB1 (p105/p50) and NF-κB2 (p100/p52). These proteins function as dimeric transcription factors. In unstimulated cells, NF-κB/Rel proteins are sequestered in the cytoplasm and inhibited by the IκB proteins. NF-κB-activating agents induce phosphorylation of IκBs, targeting them for degradation and thereby releasing the NF-κB/Rel complexes. Active NF-κB/Rel complexes are further activated by phosphorylation (17-20).
存放说明4C
参考文献1 . Kim, D. and Chung, J. (2002) J Biochem Mol Biol 35, 106-15.
2 . Manning, B.D. and Cantley, L.C. (2007) Cell 129, 1261-74.
3 . McKay, M.M. and Morrison, D.K. (2007) Oncogene 26, 3113-21.
4 . Roux, P.P. and Blenis, J. (2004) Microbiol Mol Biol Rev 68, 320-44.
5 . Zdychová, J. and Komers, R. (2005) Physiol Res 54, 1-16.
6 . Ghosh, S. and Karin, M. (2002) Cell 109, S81-S96.
7 . DiDonato, J. et al. (1996) Mol Cell Biol 16, 1295-304.
8 . Song, G. et al. J Cell Mol Med 9, 59-71.
9 . Sakurai, H. et al. (1999) J Biol Chem 274, 30353-6.
10 . Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.
11 . Sarbassov, D.D. et al. (2005) Science 307, 1098-101.
12 . Raingeaud, J. et al. (1995) J. Biol. Chem. 270, 7420-7426.
13 . Jacinto, E. et al. (2006) Cell 127, 125-37.
14 . Alessi, D.R. et al. (1994) EMBO J. 13, 1610-19.
15 . Pearson, G. et al. (2001) Endocr Rev 22, 153-83.
16 . Raman, M. et al. (2007) Oncogene 26, 3100-12.
17 . Zarubin, T. and Han, J. (2005) Cell Res 15, 11-8.
18 . OShea, J.J. et al. (2002) Cell 109 Suppl, S121-31.
19 . Kaptein, A. et al. (1996) J Biol Chem 271, 5961-4.
20 . Mattioli, I. et al. (2004) J Immunol 172, 6336-44.
参考图片
Figure 1. Treatment of NIH/3T3 cells with PDGF (A), TNFα/IL-1β (B) or IL-6 (C) induces differential phosphorylation of Akt1 at Ser473, Stat3 at Tyr705, p38α MAPK at Thr180/Tyr182, MEK1 at Ser217/221 and NF-κB p65 at Ser536 as detected by the PathScan® Signaling Nodes Multi-Target Sandwich ELISA Kit #7272. While dynamic changes in phosphorylation are observed throughout the time course, the level of total Akt, MEK1, Stat3, p38α MAPK and NF-κB p65 remains unchanged as demonstrated by sandwich ELISA and Western analysis. NIH/3T3 cells (80-90% confluent) were starved overnight and stimulated with either PDGF (100 ng/mL) or IL-6 (100 ng/mL) for 5, 10, 20, 40 and 80 minutes at 37ºC. For simultaneous treatment with TNF-α and IL-1β, exponentially growing cultures of NIH/3T3 (80-90% confluent) were treated for the indicated times at 37ºC with 20 ng/mL TNF-α and 10 ng/mL IL-1β. Lysates were assayed at a protein concentration of 0.45 mg/mL. The absorbance readings at 450 nm are shown as a 3-dimensional representation in the left figure, while the corresponding Western blots are shown in the right figure. The antibodies used for the Western analyses include Akt Antibody #9272, Phospho-Akt (Ser473) (193H12) Rabbit mAb #4058, MEK1 (61B12) Mouse mAb #2352, Phospho-MEK1/2 (Ser217/221) Antibody #9121, Stat3 Antibody #9132, Phospho-Stat3 (Tyr705) (3E2) Mouse mAb #9138, p38 MAP Kinase Antibody #9218, Phospho-p38 MAPK (Thr180/Tyr182) (28B10) Mouse mAb #9216, NF-κB p65 Antibody #3034 and Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb #3033.
Figure 2. Schematic representation of a 96-well plate depicting the color-code of the reagents used to detect endogenous levels of Akt1 (red; 1 & 2), Phospho-Akt1 (Ser473) (tan; 3 & 4), Phospho-MEK1 (Ser217/221) (green; 5 & 6), Phospho-p38 MAPK (Thr180/Tyr182) (yellow; 7 & 8), Phospho-Stat3 (Tyr705) (dark pink; 9 & 10) and Phospho-NF-κB p65 (Ser536) (orange; 11 & 12).图2:呈现的是96孔板的图解,描述了试剂的颜色代码,用于检测内源性 Akt1 (红色; 1 & 2), Phospho-Akt1 (丝氨酸473位点) (棕褐色; 3 & 4), Phospho-MEK1 (丝氨酸217/221位点) (绿色; 5 & 6), Phospho-p38 MAPK (苏氨酸180位点/酪氨酸182位点) (黄色; 7 & 8), Phospho-Stat3 (Tyr705) (深粉色; 9 & 10)和Phospho-NF-κB p65 (丝氨酸536位点) (橘色; 11 & 12)。