一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

MOUSE ANTI RAT CD8 ALPHA

货号: MCA48R 基本售价: 2931.0 元 规格: 0.25 mg

产品信息

概述
货号MCA48R
克隆号OX-8
同种亚型IgG1
反应种属Rat
来源宿主Mouse
应用C, F, IF, IP, P, WB
性能
供应商Bio-Rad Antibodies
溶解方法Reconstitute with 1.0 ml distilled waterReconstitute with 1 ml distilled water
运输条件
存放说明Store at +4oC.
DO NOT FREEZE.
This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.Pack Size: 0.1 mg, 1 mgStore at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Pack Size: 0.25 mgStore at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Pack Size: 0.1 mg, 1 mgStore at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Pack Size: 0.25 mgStore at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Prior to reconstitution store at +4oC. Following reconstitution store at +4oC.

DO NOT FREEZE.

This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Store at -20oC only.

This product should be stored undiluted.

Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.Pack Size: 0.1 mg, 1 mgStore at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Pack Size: 0.25 mgStore at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
声明
本官网所有报价均为常温或者蓝冰运输价格,如有产品需要干冰运输,需另外加收干冰运输费。
参考图片
Staining of rat peripheral blood cells with Mouse anti Rat CD8 Alpha Chain:Alexa Fluor® 488 (MCA48A488)
Published customer image:
Mouse anti Rat CD8 alpha antibody, clone OX-8 used for the identification of cytotoxic T cells in tumors by immunofluorescence.
Image caption:
Immunohistochemical labeling of tumor thin sections with CD8 (red) antibodies and DAPI (blue) nuclear stain. A: Two typical sections from an untreated control tumor collected 14 days after injecting tumor cells into the liver; B. Two typical sections of a secondary tumor that was fixed 7 days after it was injected into a liver in which the primary tumor had been nanoelectroablated 3 weeks earlier. This secondary tumor exhibited growth inhibition and a photograph of it can be seen in Fig 5B; C. Percentage of cells expressing CD8 in histological sections of tumors from four different conditions. Each bar represents the mean of measurements taken from 3–7 sections of 2 separate tumors. The untreated tumors were fixed 14 days after injection; “ns+7d” represents tumors fixed 7days after treating with 400 pulses, 15 kV, 100ns; “T2+7d” represents secondary tumors fixed 7 days after injection. CD8 concentration is significantly different from control tumor levels with **p = 0.002; “T2+7d+CD9 AB” represents secondary tumors fixed 7 days after injection with CD8 antibodies injected IP 24 h prior to the tumor cell injection. The CD8 concentration is significantly different from control tumors with *p = 0.005.

From:Citation: Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P (2015) Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth.
PLoS ONE 10(7): e0134364.
Published customer image:
Mouse anti Rat CD8α antibody, clone OX-8 used for the detection of CD8 positive cells by flow cytometry.
Image caption
Qualitative and quantitative flow cytometric analysis of lymphocyte populations in draining lymph nodes. A: Representative FACS plot of CD4+ CD8+ staining used to count T-helper cells, cytotoxic T-cells and CD4+ CD8+ double positive T-lymphocytes. Events acquired: 2×105. B: FACS plot example for B-cell detection. C: Representative FACS plot for NK cell assessment. NK-T cell were confirmed by CD3 expression (not shown). Bar diagrams: Cumulative results for the quantification of major and minor lymphocyte populations in draining LN of cornea transplanted animals. An asterisk (*) indicates statistical significance at p=0.05 determined by Mann–Whitney U-Test. Allo-Tx-d7 - animals allo-grafted and analyzed at day 07 post op, n=6; allo-Tx-rej – animals displaying allo rejection of grafted corneas analyzed after the onset of rejection, n=5; syn-Tx-d7 – syngeneically grafted animals analyzed at day 7 post-op, n=3; syn-Tx-LT – syn-grafted long-term survivors analyzed at the end of the observation period at day 42; n=3.

Maenz M, Morcos M, Ritter T. A comprehensive flow-cytometric analysis of graft infiltrating lymphocytes, draining lymph nodes and serum during the rejection phase in a fully allogeneic rat cornea transplant model. Mol Vis. 2011 Feb 8;17:420-9.
Published customer image:
Mouse anti Rat CD8α antibody, clone OX-8 used for the detection of CD8 positive cells by immunohistochemistry.
Image caption
CD4 and CD8 T cell infiltration. Photos show SN sections of an animal of the cell death group immunostained with antibody against CD4 (A and C) and CD8 (B and D). The small panels show insets in A (C) and in B (D) at higher magnification. Scale: 50 µm, applies to A–B, 10 µm applies to C–D. (E) Graph shows average (dash) and individual numbers of CD4+ cells found in one SN section per animal of each group plotted per time. Two-way ANOVA [F (8,42) = 4.1, p = 0.001 effect of group and time interaction] followed by Tukey HSD post-hoc analysis. ## or ç p<0.01 (##) compared to the other a-syn group at same time point; (††) different to the next time point of the same group. (F) Graph shows average (dash) and individual numbers of CD8+ cells found in one SN section per animal of each group plotted per time. Two-way ANOVA [F (8,41) = 4.3, p = 0.001 effect of group and time interaction] followed by Tukey HSD post-hoc analysis. (**) p<0.01 compared to all other groups at all time point.

From: Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M (2010) Microglia Acquire Distinct Activation Profiles Depending on the Degree of α-Synuclein Neuropathology in a rAAV Based Model of Parkinson's Disease.
PLoS ONE 5(1): e8784.
Published customer image:
Mouse anti Rat CD8α antibody, clone OX-8 used for the detection of CD8 positive cells by immunohistochemistry.
Image caption
Analysis of graft-infiltrating T cells. Activated CD25+ T cells and CD4+ and CD8+ T cell subsets were stained at the time points of corneal allograft rejection and calculated within the graft. A, C, and E show representative histological staining for CD25, CD4, and CD8 in grafts of treated and control animals, respectively. CD25+ (B) and CD4+ (D) cells infiltrated to a statistically significantly stronger extent in 3.2.3-treated animals when compared to control treated animals (*p<0.01, ** p<0.01). No statistical difference was observed for CD8+ T cells (NS=not significant; F).

From: Schwartzkopff J, Schlereth SL, Berger M, Bredow L, Birnbaum F, Böhringer D, Reinhard T. NK cell depletion delays corneal allograft rejection in baby rats. Mol Vis. 2010 Oct 2;16:1928-35.
Published customer image:
Mouse anti Rat CD8α antibody, clone OX-8 used for the detection of CD8 expressing cells in Bouin's fixed, paraffin embedded tissue sections by immunofluorescence.
Image caption:
CD3ε, CD8α, and PAX5 immunostainings. (A–D) CD3ε staining in the zone of the foramen of Monro (fM) of the injected ventricle comprising a part of the stria medullaris [sm, (A)]. Many positive cells occurred in the perivascular spaces of the local large venules 12 h after NA injection. A detailed view (B) of the vessels in the stria medullaris (sm) shows that many positive cells have smooth nuclei while polymorphonucleated cells (arrow) are negative. (C) Twenty-four hours after the injection, some positive cells seemed to cross the ependyma of the choroid plexus (cp). (D) Positive cells were also present in the meninges (men) next to the optic chiasm (oc), and few appeared to penetrate the brain parenchyma (arrow). (E–G) Double immunofluorescence of lymphocytes in a 12 h post-injection brain section. Most CD3ε-positive cells [(E), green] found in the perivascular spaces of the large vessels were also positive for CD8α [(F), red]. (H–J) PAX5 immunostaining showing positive cells in the wall of the large vessels around the foramen of Monro [fM; (H)], although they were not as abundant as CD3ε-positive cells. Few PAX5-positive nuclei were also found in the choroid plexus (cp) of the injected lateral ventricle (I) as well as in the meninges (men) close to the optic chiasm [oc; (J)]. cp, choroid plexus; fM, foramen of Monro; men, meninges; oc, optic chiasm; sm, stria medullaris.

From: Granados-Durán P, López-Ávalos MD, Grondona JM, Gómez-Roldán Mdel C, Cifuentes M, Pérez-Martín M, Alvarez M, Rodríguez de Fonseca F, Fernández-Llebrez P. Neuroinflammation induced by intracerebroventricular injection of microbial neuraminidase. Front Med (Lausanne). 2015 Mar 17;2:14.
Immunofluorescence staining of rat lymph node cryosection with Mouse anti Rat CD25 antibody, clone OX-35 (MCA153), red in A and Mouse anti Rat CD8, clone OX-8 (MCA48), green in B. C is the merged image with nuclei counterstained blue using DAPI. High power
Immunofluorescence staining of rat lymph node cryosection with Mouse anti Rat CD25 antibody, clone OX-35 (MCA153), red in A and Mouse anti Rat CD8 antibody, clone OX-8 (MCA48), green in B. C is the merged image with nuclei counterstained blue using DAPI. Low power
Immunofluorescence staining of rat lymph node cryosection with Mouse anti Rat CD25 antibody, clone OX-35 (MCA153), red in A and Mouse anti Rat CD8 antibody, clone OX-8 (MCA48), green in B. C is the merged image with nuclei counterstained blue using DAPI. High power
Immunofluorescence staining of rat lymph node cryosection with Mouse anti Rat CD25 antibody, clone OX-35 (MCA153), red in A and Mouse anti Rat CD8 antibody, clone OX-8 (MCA48), green in B. C is the merged image with nuclei counterstained blue using DAPI. Low power
Immunofluorescence staining of rat lymph node cryosection with Mouse anti Rat CD11b antibody, clone OX-42 (MCA275), red in A and Mouse anti Rat CD8 antibody, clone OX-8 (MCA48), green in B. C is the merged image with nuclei counter-stained in blue using DAPI. High power
Immunofluorescence staining of rat lymph node cryosection with Mouse anti Rat CD163 antibody, clone ED2 (MCA342), red an A and Mouse anti Rat CD8 antibody, clone OX-8 (MCA48), green in B. C is the merged image with nuclei counter-stained blue using DAPI. High power