一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

Autophagy Vesicle Nucleation Antibody Sampler Kit

货号: 70751T 基本售价: 6830.0 元 规格: -

产品信息

概述
货号70751T
目标/特异性Each antibody in the Autophagy Vesicle Nucleation Antibody Sampler Kit detects endogenous levels of its respective target. Rubicon (D9F7) Rabbit mAb detects a band of unknown origin at 55 kDa.
性能
供应商CST
背景Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes. These proteins are involved in the formation of autophagosomes, cytoplasmic vacuoles that are delivered to lysosomes for degradation. The PIK3R4/PI3K class III complex interacts with Beclin-1 to play a role during several stages of autophagy. Autophagosome formation is stimulated when Atg14 complexes with PIK3R4, PI3K class III, and Beclin-1. The UVRAG protein competes with Atg14 for Beclin-1 binding, forming a mutually exclusive complex with PIK3R4, PI3K class III, and Beclin-1 that regulates autophagosome maturation. Autophagosome maturation is impaired in the presence of the Beclin-1-binding protein Rubicon (4,5). Co-expression of PIK3R4 is required for PI3K class III activation and regulation by both Beclin-1/UVRAG and nutrient levels (6). Bif-1 directly binds to UVRAG, forming a complex with Beclin-1, resulting in increased PI3-kinase class III/Vps34 activity required for autophagosome maturation (7). Inhibition of GSK-3β, as seen during nutrient deprivation, results in increased expression of Bif-1, and can contribute to autophagic cell death (8). Atg9A is an integral membrane protein that is required for both the initiation and the expansion of the autophagosome (9,10). Recruitment of Atg9A to the autophagosomal membrane is dynamic and transient as Atg9A also cycles between autophagy-related structures known as omegasomes, the trans-Golgi network (TGN), and endosomes, and at no point becomes a stable component of the autophagosomal membrane (9,11). The precise regulation of Atg9A trafficking is not fully clarified, yet it is suggested to involve p38 mitogen-activated protein kinase (MAPK)-binding protein p38IP and the Beclin-1-binding protein Bif-1 (12,13).

运输条件0.75
存放说明-20C
参考文献1 . Reggiori, F. and Klionsky, D.J. (2002) Eukaryot Cell 1, 11-21.
2 . Codogno, P. and Meijer, A.J. (2005) Cell Death Differ 12 Suppl 2, 1509-18.
3 . Yang, J. et al. (2010) J Cell Sci 123, 861-70.
4 . Levine, B. and Yuan, J. (2005) J Clin Invest 115, 2679-88.
5 . Yamada, T. et al. (2005) J Biol Chem 280, 18283-90.
6 . Orsi, A. et al. (2012) Mol Biol Cell 23, 1860-73.
7 . Yan, Y. et al. (2009) Biochem J 417, 747-55.
8 . Webber, J.L. and Tooze, S.A. (2010) EMBO J 29, 27-40.
9 . Sun, Q. et al. (2008) Proc Natl Acad Sci U S A 105, 19211-6.
10 . Takahashi, Y. et al. (2007) Nat Cell Biol 9, 1142-51.
11 . Takahashi, Y. et al. (2011) Autophagy 7, 61-73.
12 . Zhong, Y. et al. (2009) Nat Cell Biol 11, 468-76.
13 . Young, A.R. et al. (2006) J Cell Sci 119, 3888-900.
参考图片
After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.
Western blot analysis of extracts from mouse brain and C6 cells using PI3 Kinase Class III (D9A5) Rabbit mAb.
Western blot analysis of extracts from various cell lines using Beclin-1 (D40C5) Rabbit mAb.
Western blot analysis of extracts from HeLa cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), SignalSilence® Beclin-1 siRNA I #6222 (+) or SignalSilence® Beclin-1 siRNA II (+), using Beclin-1 (D40C5) XP® Rabbit mAb #3495 (upper) or α-Tubulin (11H10) Rabbit mAb #2125 (lower). The Beclin-1 (D40C5) XP® Rabbit mAb confirms silencing of Beclin-1 expression, while the α-Tubulin (11H10) Rabbit mAb is used to control for loading and specificity of Beclin-1 siRNA.
Western blot analysis of extract from various cell lines using Atg14 Antibody.
Western blot analysis of extracts from HeLa cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), SignalSilence® Atg14 siRNA I #6286 (+) or SignalSilence® Atg14 siRNA II #6287 (+), using Atg14 Antibody #5504 (upper) or β-Tubulin (9F3) Rabbit mAb #2128 (lower). The Atg14 Antibody confirms silencing of Atg14 expression, while the β-Tubulin (9F3) Rabbit mAb is used as a loading control.
Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with a GFP-Atg14 construct (+), using Atg14 Antibody. GFP-Atg14 construct was kindly provided by Dr. Qing Zhong, University of California, Berkeley CA.
Western blot analysis of extracts from various cell lines using Rubicon (D9F7) Rabbit mAb.
Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with human Rubicon (hRubicon, +), using Rubicon (D9F7) Rabbit mAb. Rubicon construct was kindly provided by Dr. Qing Zhong, University of California, Berkeley, CA.
Western blot analysis of extracts from various cell lines using Bif-1 Antibody.
Western blot analysis of extracts from various cell lines using UVRAG (D2Q1Z) Rabbit mAb (upper) or β-Actin (D6A8) Rabbit mAb #8457 (lower). HCT 116 cells have been reported to contain a monoallelic frameshift mutation resulting in significantly reduced levels of endogenous UVRAG expression (11).
Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with a construct expressing human UVRAG (hUVRAG; +), using UVRAG (D2Q1Z) Rabbit mAb.
Immunoprecipitation of UVRAG from PANC-1 cell extracts using Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (lane 2) or UVRAG (D2Q1Z) Rabbit mAb (lane 3). Lane 1 is 10% input. Western blot analysis was performed using UVRAG (D2Q1Z) Rabbit mAb.
Western blot analysis of extracts of various cell lines using Atg9A (D4O9D) Rabbit mAb.
Western blot analysis of extracts from RD cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-) or SignalSilence® Atg9A siRNA I #7051 (+), using Atg9A (D4O9D) Rabbit mAb (upper) or β-Actin (D6A8) Rabbit mAb #8457 (lower). The Atg9A (D4O9D) Rabbit mAb confirms silencing of Atg9A expression while the β-Actin (D6A8) Rabbit mAb is used as a loading control.