一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

Receptor Tyrosine Kinase Antibody Sampler Kit

货号: 42344T 基本售价: 6830.0 元 规格: -

产品信息

概述
货号42344T
目标/特异性Each of the antibodies in the Receptor Tyrosine Kinase Assay Kit recognizes endogenous levels of the specified protein.
性能
供应商CST
背景Tyrosine phosphorylation plays a key role in cellular signaling (1). In cancer studies, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine have been invaluable reagents in these studies (3,4).

Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), is a heterodimer made of α- and β-subunits (5,6). The cytoplasmic region of the β-chain is essential for tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines (Tyr1003, 1234/1235, 1349) which recruit downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (7-9). Altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast (10,11).

The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (12,13). c-Src mediated phosphorylation of EGF receptor (EGFR) at Tyr845 provides a binding surface for substrate proteins (14-16). The SH2 domain of PLCγ binds at phospho-Tyr992, activating PLCγ-mediated downstream signaling (17). Adaptor protein c-Cbl binds at phospho-Tyr1045, leading to receptor ubiquitination and degradation (18,19). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (20), while phospho-Tyr1148 and -Tyr1173 provide a docking site for the Shc scaffold protein, playing a role in MAP kinase signaling (13).

Platelet derived growth factor (PDGF) family proteins bind to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ) (21). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (22). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of signal transduction molecules such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. Signaling pathways initiated by activated PDGF receptors lead to control of cell growth, actin reorganization, migration, and differentiation (23). Tyr751 and Tyr740 of PDGFRβ regulate binding and activation of PI3 kinase (24,25).

Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases, after ligand binding and dimerization (26,27). Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (28). The other phosphorylated tyrosine residues (Tyr463, 583, 585, 730, and 766) may provide docking sites for downstream signaling components such as Crk and PLCγ (29,30).

FMS-related tyrosine kinase 3 (FLT3), a member of the type III receptor tyrosine kinase family, is expressed on early hematopoietic progenitor cells and supports growth and differentiation within the hematopoietic system (31,32). FLT3 is activated after binding with its ligand FL, which results in a cascade of tyrosine autophosphorylation and tyrosine phosphorylation of downstream targets (33). The p85 subunit of PI3 kinase, SHP2, GRB2 and Shc are associated with FLT3 after FL stimulation (34-36). Tyr589/591 may play an important role in regulation of FLT3 tyrosine kinase activity (37).

The ErbB2 (HER2) proto-oncogene encodes a transmembrane, receptor-like glycoprotein with tyrosine kinase activity (38). ErbB2 kinase activity can be activated in the absence of a ligand when overexpressed and through associations with other ErbB family members (39). Phosphorylation at Tyr877 may be involved in regulating ErbB2 activity. Autophosphorylation of ErbB2 at Tyr1248 and Tyr1221/1222 couples ErbB2 to the Ras-Raf-MAP kinase signal transduction pathway (38,40).

运输条件0.75
存放说明-20C
参考文献1 . Schlessinger, J. (2000) Cell 103, 211-25
2 . Cooper, C.S. et al. Nature 311, 29-33.
3 . Hackel, P.O. et al. (1999) Curr Opin Cell Biol 11, 184-9.
4 . Deuel, T.F. et al. (1988) Biofactors 1, 213-7.
5 . Powers, C.J. et al. (2000) Endocr Relat Cancer 7, 165-97.
6 . Shurin, M.R. et al. (1998) Cytokine Growth Factor Rev 9, 37-48.
7 . Muthuswamy, S.K. et al. (1999) Mol Cell Biol 19, 6845-57.
8 . Blume-Jensen, P. and Hunter, T. (2001) Nature 411, 355-65.
9 . Bottaro, D.P. et al. (1991) Science 251, 802-4.
10 . Zwick, E. et al. (1999) Trends Pharmacol Sci 20, 408-12.
11 . Reilly, J.F. et al. (2000) J Biol Chem 275, 7771-8.
12 . Naoe, T. et al. (2001) Cancer Chemother Pharmacol 48 Suppl 1, S27-30.
13 . Qian, X. et al. (1994) Proc Natl Acad Sci USA 91, 1500-4.
14 . Bardelli, A. et al. (1997) Oncogene 15, 3103-11.
15 . Cooper, J.A. and Howell, B. (1993) Cell 73, 1051-4.
16 . Betsholtz, C. et al. (2001) Bioessays 23, 494-507.
17 . Mohammadi, M. et al. (1996) Mol Cell Biol 16, 977-89.
18 . Namikawa, R. et al. (1996) Stem Cells 14, 388-95.
19 . Ward, S.G. et al. (1992) J Biol Chem 267, 23862-9
20 . Taher, T.E. et al. (2002) J Immunol 169, 3793-800.
21 . Hubbard, S.R. et al. (1994) Nature 372, 746-54.
22 . Mohammadi, M. et al. (1991) Mol Cell Biol 11, 5068-78.
23 . Beslu, N. et al. (1996) J Biol Chem 271, 20075-81.
24 . Glenney, J.R. et al. (1988) J Immunol Methods 109, 277-85
25 . Schaeper, U. et al. (2000) J Cell Biol 149, 1419-32.
26 . Biscardi, J.S. et al. (1999) J Biol Chem 274, 8335-43.
27 . Ostman, A. and Heldin, C.H. (2001) Adv Cancer Res 80, 1-38.
28 . Larsson, H. et al. (1999) J Biol Chem 274, 25726-34.
29 . Zhang, S. and Broxmeyer, H.E. (2000) Biochem Biophys Res Commun 277, 195-9.
30 . Kwon, Y.K. et al. (1997) J Neurosci 17, 8293-9.
31 . Eder, J.P. et al. (2009) Clin Cancer Res 15, 2207-14.
32 . Emlet, D.R. et al. (1997) J Biol Chem 272, 4079-86.
33 . Panayotou, G. et al. (1992) EMBO J 11, 4261-72.
34 . Zhang, S. et al. (1999) J Leukoc Biol 65, 372-80.
35 . Sattler, M. and Salgia, R. (2009) Update Cancer Ther 3, 109-118.
36 . Levkowitz, G. et al. (1999) Mol Cell 4, 1029-40.
37 . Mizuki, M. et al. (2000) Blood 96, 3907-14.
38 . Ettenberg, S.A. et al. (1999) Oncogene 18, 1855-66.
39 . Kashishian, A. et al. (1992) EMBO J 11, 1373-82.
40 . Rojas, M. et al. (1996) J Biol Chem 271, 27456-61.
参考图片
After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.
Western blot analysis of extracts from Baf3/FLT3 transfected cells and SEM leukemia cells, using FLT3 (8F2) Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded SEM cells, using FLT3 (8F2) Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded human glioblastoma using PDGF Receptor β (28E1) Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded human colon carcinoma using PDGF Receptor β (28E1) Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded U-87MG cells, showing membrane localization, using PDGF Receptor β (28E1) Rabbit mAb.
Western blot analysis of extracts from various cell lines, using PDGF Receptor β (28E1) Rabbit mAb.
Confocal immunofluorescent analysis of NIH/3T3 cells, serum-starved (left) or PDGF-treated (right), using PDGF Receptor beta (28E1) Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).
Western blot analysis of extracts from NIH/3T3 and human skeletal muscle cells (SKMC), untreated or treated with PDGF-BB, using PDGF Receptor α (D1E1E) XP® Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded human glioblastoma using PDGR Receptor α (D1E1E) XP® Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded U-118 MG xenograft using PDGF Receptor α (D1E1E) XP® Rabbit mAb in the presence of control peptide (left) or antigen specific peptide (right).
Immunohistochemical analysis of paraffin-embedded HCC827 xenograft using PDGF Receptor α (D1E1E) XP® Rabbit mAb.
Immunohistochemical analysis of paraffin-embedded human colon using PDGR Receptor α (D1E1E) XP® Rabbit mAb.
Flow cytometric analysis of U-87 MG cells (blue) and H1703 cells (green) using PDGF Receptor α (D1E1E) XP® Rabbit mAb.
Immunohistochemical analysis of frozen U-87MG xenograft using PDGF Receptor beta (28E1) Rabbit mAb.