货号 | 8595T |
描述 | The Nuclear Receptor Antibody Sampler Kit provides an economical means to evaluate the presence and status of nuclear receptors. This kit contains enough primary antibody to perform four western blots per primary.Nuclear Receptor Antibody Sampler Kit提供了一种经济的评估核受体存在和状态的方法。该试剂盒包含足够的抗体,每种抗体可以完成四次western blots 实验。 |
目标/特异性 | Each antibody in the Nuclear Receptor Antibody Sampler Kit recognizes endogenous levels of total respective protein. Glucocorticoid Receptor (D8H2) XP® Rabbit mAb is predicted to cross-react with all known alternative translation start site generated isoforms of glucocorticoid receptor-α and glucocorticoid receptor-β, and does not cross-react with mineralocorticoid receptor. Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb does not cross-react with either the glucocorticoid receptor or the mineralocorticoid receptor. RARγ1 (D3A4) XP® Rabbit mAb is not predicted to cross-react with RARγ2, and does not cross-react with either RARα or RARβ. RXRα (D6H10) Rabbit mAb does not cross-react with either RXRβ or RXRγ. |
供应商 | CST |
背景 | Nuclear Receptors are transcription factors responsible for sensing bioactive molecules, including steroid and thyroid hormones. They are regulated by multiple posttranslational modifications, which in turn impacts their ability to regulate the expression of specific genes involved in the control of reproduction, development, and metabolism.
Androgen receptor (AR), a zinc finger transcription factor belonging to the nuclear receptor superfamily, is activated by phosphorylation and dimerization upon ligand binding (1). This promotes nuclear localization and binding of AR to androgen response elements in androgen target genes. AR plays a crucial role in several stages of male development and the progression of prostate cancer (2,3).
Estrogen receptor α (ERα), a member of the steroid receptor superfamily, contains highly conserved DNA binding and ligand binding domains (4). Through its estrogen-independent and estrogen-dependent activation domains (AF-1 and AF-2, respectively), ERα regulates transcription by recruiting coactivator proteins and interacting with general transcriptional machinery (5).
Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (6).
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (7). PPARγ is preferentially expressed in adipocytes, as well as in vascular smooth muscle cells and macrophages (8). Besides its role in mediating adipogenesis and lipid metabolism (8), PPARγ also modulates insulin sensitivity, cell proliferation, and inflammation (9).
Human progesterone receptor (PR) is expressed as two forms: the full length PR B and the short form PR A. PR A lacks the first 164 amino acid residues of PR B (10,11). Both PR A and PR B are ligand activated, but differ in their relative ability to activate target gene transcription (12,13).
Nuclear retinoic acid receptors (RARs) consist of three subtypes encoded by separate genes: α (NR1B1), β (NR1B2), and γ (NR1B3). For each subtype, there are at least two isoforms, which are generated by differential promoter usage and alternative splicing and differ only in their N-terminal regions. Retinoids, which are metabolites of vitamin A, serve as ligands for RARs (14). RARs function as ligand-dependent transcriptional regulators and are found to be heterodimerized with retinoid X receptors (RXRs). These transcriptionally active dimers regulate the expression of genes involved in cellular differentiation, proliferation, and apoptosis (15,16).
The human retinoid X receptors are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (17).核受体是负责检测生物活性分子的转录因子,包括类固醇和甲状腺激素。它们受多种翻译后修饰的调控,反过来又影响参与生殖、发育和新陈代谢特定基因表达的自我调控能力。雄激素受体(AR),是锌指转录因子,属于核受体超家族,通过磷酸化和配体结合的二聚化被激活(1)。这促进了细胞核定位和雄激素靶基因中雄激素与应答元件的结合。 AR在男性发育和前列腺癌发展的几个阶段起着至关重要的作用(2,3)。雌激素受体α(ERα),是类固醇受体超家族的一员,含有高度保守的DNA结合域(DBD)和配体结合域(LBD)(4)。ERα通过其雌激素非依赖性和雌激素依赖性激活域(分别为AF-1和AF-2),调节转录招募共激活因子蛋白和与一般转录机制的相互作用(5)。糖皮质激素通过与转录因子的细胞核激素受体超家族成员糖皮质激素受体(GR)/ NR3C1联合,控制细胞增殖、炎症和代谢(6)。 过氧化物酶体增殖物激活受体γ(PPARγ)是配体激活的核受体超家族成员,作为转录激活剂起作用(7)。 PPARγ优先在脂肪细胞、血管平滑肌细胞和巨噬细胞表达(8)。除此之外,它在介导的脂肪细胞分化和脂质代谢中起作用(8),PPARγ调节胰岛素敏感性、细胞增殖和炎症(9)。 人孕酮受体(PR)表现为两种形式:全长的孕酮受体B和短的孕酮受体A。PR A缺少PR B的第164个氨基酸残基(1,2)。PR A和PR B都是配体激活,但其激活靶基因转录的相对能力是不同的(12,13)。
维甲酸核受体(RARs)包括三个亚型,这三个亚型由分别由α (NR1B1), β (NR1B2), 和γ (NR1B3)编码.每种亚型至少有两种形式,通过差动启动子使用和选择性剪接产生,不同之处仅在于它们的N-端区域。维甲酸是维生素A的代谢产物,作为维甲酸受体的配体(14)。维甲酸受体以配体依赖的转录调节起作用,发现其与维甲酸X受体(RXRs)形成异源二聚体。这些转录活性二聚体调节参与细胞分化、增殖、凋亡的基因表达(15,16)。
人视黄醇X受体(RXRs)由三种不同的基因(RXRα,RXRβ,RXRγ)编码,并与具有高亲和力的维生素A衍生物,9-顺-视黄酸选择性结合。 RXRs是II型核激素受体,主要位于核室,非依赖性配体结合。核RXR与核激素受体亚家族蛋白形成异二聚体,包括甲状腺激素受体、维甲酸受体、维生素D受体、过氧化物酶体增殖物活化受体、肝脏X受体、法尼酯X受体(17)。Application References |
存放说明 | -20C |
参考文献 | 1 . Li, J. and Al-Azzawi, F. (2009) Maturitas 63, 142-8. 2 . Evans, R.M. (1988) Science 240, 889-895. 3 . Avila, D.M. et al. (2001) J. Steroid. Biochem. Mol. Biol. 76, 135-142. 4 . Kastner, P. et al. (1990) EMBO J. 112, 1603-1614. 5 . Montgomery, J.S. et al. (2001) J. Pathol. 195, 138-146. 6 . Giangrande, P.H. et al. (2000) Mol. Cell. Biol. 20, 3102-3115. 7 . Mangelsdorf, D.J. et al. (1995) Cell 83, 835-9. 8 . Wen, D.X. et al. (1994) Mol. Cell. Biol. 14, 8356-8364. 9 . Glass, C.K. and Rosenfeld, M.G. (2000) Genes Dev 14, 121-41. 10 . Yamamoto, K.R. (1985) Annu. Rev. Genet 19, 209-252. 11 . Tontonoz, P. et al. (1995) Curr Opin Genet Dev 5, 571-6. 12 . Rosen, E.D. et al. (1999) Mol Cell 4, 611-7. 13 . Murphy, G.J. and Holder, J.C. (2000) Trends Pharmacol Sci 21, 469-74. 14 . Rochette-Egly, C. and Germain, P. (2009) Nucl Recept Signal 7, e005. 15 . Delacroix, L. et al. (2010) Mol Cell Biol 30, 231-44. 16 . Eifert, C. et al. (2006) Mol Reprod Dev 73, 796-824. 17 . Gronemeyer, H. et al. (2004) Nat Rev Drug Discov 3, 950-64. |
Flow cytometric analysis of MDA MB-231 cells (blue) and T47D cells using Progesterone REceptor A/B (D8Q2J) XP® Rabbit mAb. Anti-rabbit IgG (H+L), F(ab)2 Fragment (ALexa FLuor® 488 Conjugate) #4412 was used as a secondary antibody. | |
Human whole blood was fixed, lysed, and permeabilized as per the Cell Signaling Technology Flow Alternate Protocol and stained using Glucocorticoid Receptor (D8H2) XP® Rabbit mAb (blue) compared to Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (red). Anti-rabbit IgG (H+L), F(ab)2 Fragment (Alexa Fluor® 488 Conjugate) #4412 was used as a secondary antibody. Samples were gated on CD3+ lymphocytes. | |
Western blot analysis of extracts from ER-positive (MCF7, T-47D, ZR-75-1) and ER-negative (SK-BR-3 and MCF 10A) cell lines using Estrogen Receptor α (D8H8) Rabbit mAb #8644 (upper) or β-Actin (D6A8) Rabbit mAb #8457 (lower).Western blot方法检测 雌激素受体阳性细胞系(MCF7, T-47D, ZR-75-1)和雌激素受体阴性细胞系(SK-BR-3和MCF 10A) 提取物,使用的抗体为Estrogen Receptor α (D8H8) Rabbit mAb #8644 (上图)或 β-Actin (D6A8) Rabbit mAb #8457 (下图). | |
Western blot analysis of extracts from various cell lines using RARγ1 (D3A4) XP® Rabbit mAb #8965.Western blot方法检测多个细胞系提取物,使用的抗体为RARγ1 (D3A4) XP® Rabbit mAb #8965. | |
Western blot analysis of extracts from NIH/3T3 and 3T3-L1 cells (differentiated 6 d) using PPARγ (C26H12) Rabbit mAb #2435.Western blot方法检测 NIH/3T3细胞和 3T3-L1细胞(分化6天)提取物,使用的抗体为PPARγ (C26H12) Rabbit mAb #2435. | |
Western blot analysis of extracts from PR-positive (T-47D) and PR-negative (MDA-MB-231) cell lines using Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb #8757 (upper) or GAPDH (D16H11) XP® Rabbit mAb #5174 (lower).Western blot方法检测 孕酮受体阳性细胞系(T-47D)和孕酮受体阴性细胞系(MDA-MB-231)提取物,使用的抗体为Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb #8757 (上图) 或GAPDH (D16H11) XP® Rabbit mAb #5174 (下图). | |
Western blot analysis of extracts from NIH/3T3 and C6 cells using RARα Antibody #2554.Western blot方法检测 NIH/3T3细胞和C6细胞提取物,使用的抗体为RARα Antibody #2554. | |
Western blot analysis of extracts from AR-positive (LNCaP and MCF7) and AR-negative (PC-3 and DU 145) cell lines using Androgen Receptor (D6F11) XP® Rabbit mAb #5153 (upper) or β-Actin Antibody #4967 (lower).Western blot方法检测雄激素受体阳性细胞系(LNCaP 和MCF7)和雄激素受体阴性细胞系(PC-3和DU 145)提取物,使用的抗体为Androgen Receptor (D6F11) XP® Rabbit mAb #5153 (上图)或β-Actin Antibody #4967 (下图)。 | |
Western blot analysis of extracts from various cell lines using RXRα (D6H10) Rabbit mAb #3085.Western blot方法检测多个细胞系提取物,使用的抗体为RXRα (D6H10) Rabbit mAb #3085. | |
Confocal immunofluorescent analysis of MCF7 (left) or SK-BR-3 (right) cells using Estrogen Receptor α (D8H8) Rabbit mAb (green). Actin filaments were labeled with DY-554 phalloidin (red). | |
Western blot analysis of extracts from various cell lines using Glucocorticoid Receptor (D8H2) XP® Rabbit mAb #3660.Western blot方法检测多个细胞系提取物,使用的抗体为Glucocorticoid Receptor (D8H2) XP® Rabbit mAb #3660. | |
T-47D cells were cultured in phenol red-free media supplemented with 5% charcoal-stripped FBS for 48 hr and then either untreated (left panel) or promegestone-treated (R5020, 10 nM, 1 hr; right panel). Chromatin immunoprecipitations were performed with cross-linked chromatin from 4 x 106 cells and 5 µl of Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb or 2 µl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human FKBP51 Intron 5 Primers #7859, human E2F-1 proximal enhancer site #1 primers, and SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one. | |
Western blot analysis of extracts from T-47D (PR positive) and MDA-MB-231 (PR negative) cells using Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb (upper) or GAPDH (D16H11) XP® Rabbit mAb #5174 (lower). | |
Western blot analysis of extracts from T-47D cells, grown for 48 hr in phenol red-free medium supplemented with 5% charcoal-stripped FBS and then treated with either a vehicle control (-) or promegestone (R5020, 100 nM, 16 hr; +), using Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb (upper) or GAPDH (D16H11) XP® Rabbit mAb #5174 (lower). Prolonged treatment of PR-expressing cells with R5020 is known to induce PR downregulation and hyperphosphorylation, which is reflected by slower migration on SDS-PAGE. | |
Immunohistochemical analysis of paraffin-embedded cell pellets, T-47D (high PR, left), MCF-7 (low PR, middle) and MDA-MB-231 (PR negative, right), using Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb. |