一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

Calcium Ion Regulation Antibody Sampler Kit

货号: 8575T 基本售价: 5484.0 元 规格: -

产品信息

概述
货号8575T
描述The Calcium Ion Regulation Antibody Sampler Kit provides an economical way to investigate the regulation of calcium ions within the cell. The kit contains enough primary and secondary antibodies to perform four western blot experiments per primary antibody.
目标/特异性ATP2A1/SERCA1 (A988) Antibody recognizes endogenous levels of total ATP2A1/SERCA1 protein. ATP2A2/SERCA2 (D51B11) Rabbit mAb recognizes endogenous levels of total ATP2A2/SERCA2 protein. Phospho-Phospholamban (Ser16/Thr17) Antibody recognizes endogenous levels of phospholamban protein only when phosphorylated at Ser16 and Thr17. This antibody does not detect mono- or non-phosphorylated phospholamban. Phospholamban Antibody recognizes endogenous levels of total phospholamban protein. Phospho-PKA C (Thr197) (D45D3) Rabbit mAb recognizes endogenous levels of PKA C (-α, -β, and -γ) only when phosphorylated at Thr197. PKA C-α (D38C6) Rabbit mAb recognizes endogenous levels of total PKA C-α protein.
性能
供应商CST
背景Sarcoplasmic and endoplasmic reticulum Ca2+ ATPases (SERCA) are members of a highly conserved family of Ca2+ pumps (1). ATP2A1 (SERCA1) is a fast-twitch, skeletal muscle sarcoplasmic reticulum (SR) Ca2+ ATPase (2). Multiple ATP2A2 (SERCA2) isoforms have been isolated, with ATP2A2a (SERCA2a) found predominantly in the SR of muscle cells and ATP2A2b (SERCA2b) more ubiquitously expressed in the ER of most cell types (3). Post-translational modification of ATP2A2, including phosphorylation and tyrosine nitration, modify Ca2+ -ATPase activity and calcium transport (4,5). 
 
 Phospholamban (PLN) was identified as a major phosphoprotein component of the SR (6). Despite very high expression in cardiac tissue, phospholamban is also expressed in skeletal and smooth muscle (7). Localization of PLN is limited to the SR, where it serves as a regulator of the sarco-endoplasmic reticulum calcium ATPase, SERCA (8). PLN binds directly to SERCA and effectively lowers its affinity for calcium, thus reducing calcium transport into the SR. Phosphorylation of PLN at Ser16 by PKA or myotonic dystrophy protein kinase and/or phosphorylation at Thr17 by Ca2+/calmodulin-dependent protein kinase results in release of PLN from SERCA, relief of this inhibition, and increased calcium uptake by SR (reviewed in 9,10). It has long been held that phosphorylation at Ser16 and Thr17 occurs sequentially, but increasing evidence suggests that phosphorylation, especially at Thr17, may be differentially regulated (reviewed in 11,12). 
 
 The second messenger cyclic AMP (cAMP) activates cAMP-dependent protein kinase (PKA or cAPK) in mammalian cells and controls many cellular mechanisms such as gene transcription, ion transport, and protein phosphorylation (13). Inactive PKA is a heterotetramer composed of a regulatory subunit (R) dimer and a catalytic subunit (C) dimer. In this inactive state, the pseudosubstrate sequences on the R subunits block the active sites on the C subunits. Three C subunit isoforms (C-α, C-β, and C-γ) and two families of the regulatory subunits (RI and RII) with distinct cAMP binding properties have been identified. Upon binding of cAMP to the R subunits, the auto-inhibitory contact is eased and active monomeric C subunits are released. PKA shares substrate specificity with Akt (PKB) and PKC, which are characterized by an arginine at position -3 relative to the phosphorylated serine or threonine residue (14). PKA phosphorylation is involved in the regulation of Ca2+ channels, including Cav1.1 in skeletal muscle and Cav1.2 in the heart (reviewed in 15).
存放说明-20C
参考文献1 . Hovnanian, A. (2007) Subcell Biochem 45, 337-63.
2 . Kirchberber, M.A. et al. (1975) Recent Adv Stud Cardiac Struct Metab 5, 103-15.
3 . Montminy, M. (1997) Annu Rev Biochem 66, 807-22.
4 . Odermatt, A. et al. (1996) Nat Genet 14, 191-4.
5 . de Smedt, H. et al. (1991) J Biol Chem 266, 7092-5.
6 . DellAcqua, M.L. and Scott, J.D. (1997) J Biol Chem 272, 12881-4.
7 . Fujii, J. et al. (1991) J Biol Chem 266, 11669-75.
8 . Hawkins, C. et al. (1995) Mol Cell Biochem 142, 131-8.
9 . Tada, M. and Kirchberger, M.A. Recent Adv Stud Cardiac Struct Metab 11, 265-72.
10 . Viner, R.I. et al. (1999) Biochem J 340 ( Pt 3), 657-69.
11 . Traaseth, N.J. et al. (2008) Biochemistry 47, 3-13.
12 . Bhupathy, P. et al. (2007) J Mol Cell Cardiol 42, 903-11.
13 . Hagemann, D. and Xiao, R.P. (2002) Trends Cardiovasc Med 12, 51-6.
14 . Mattiazzi, A. et al. (2005) Cardiovasc Res 68, 366-75.
15 . Dai, S. et al. (2009) Physiol Rev 89, 411-52.
参考图片

Western blot analysis of extracts from 16-month old control (WKY) and spontaneous hypertensive (SHR) rat hearts using Phospho-Phospholamban (Ser16/Thr17) Antibody (left), Phospholamban Antibody #8495 (middle), or GAPDH (14C10) Rabbit mAb #2118 (right).
Western blot方法检测未处理或由磷酸酶处理的NIH/3T3细胞抽提物,使用的抗体为Phospho-PKA C (Thr197) (D45D3) Rabbit mAb (上图) or PKA C-α Antibody #4782 (下图)进行

Western blot analysis of extracts from NIH/3T3 cells, untreated or λ phosphatase-treated, using Phospho-PKA C (Thr197) (D45D3) Rabbit mAb (upper) or PKA C-α Antibody #4782 (lower).

Western blot方法检测HeLa, C6, and COS-7细胞来源的抽提物,使用的抗体为PKA C-α (D38C6) Rabbit mAb兔单抗
Western blot方法检测各种细胞来源的抽提物,使用的方法为ATP2A2/SERCA2 (D51B11) Rabbit mAb兔单抗

Western blot analysis of extracts from HeLa, C6, and COS-7 cells using PKA C-α (D38C6) Rabbit mAb.

Western blot analysis of extracts from various cell types using ATP2A2/SERCA2 (D51B11) Rabbit mAb.

After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO* is added and emits light during enzyme catalyzed decomposition.

一抗结合靶蛋白后,加入二抗,HRP偶联的二抗复合物形成。然后加入LumiGLO*显色发光