一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

Rpb1 CTD Antibody Sampler Kit

货号: 54020T 基本售价: 4822.0 元 规格: -

产品信息

概述
货号54020T
目标/特异性Rpb1 NTD (D8L4Y) Rabbit mAb recognizes endogenous levels of total Rpb1 protein at the amino terminal domain (NTD). Phospho-Rpb1 CTD (Ser2) (E1Z3G) Rabbit mAb recognizes endogenous levels of Rpb1 only when the carboxy-terminal domain (CTD) heptapeptide repeat [Tyr1, Ser2, Pro3, Thr4, Ser5, Pro6, Ser7] is phosphorylated at Ser2. This antibody does not cross-react with Rpb1 CTD phosphorylated at Ser5 or Ser7. Phospho-Rpb1 CTD (Ser5) (D9N5I) Rabbit mAb recognizes endogenous levels of Rpb1 only when the carboxy-terminal domain (CTD) heptapeptide repeat [Tyr1, Ser2, Pro3, Thr4, Ser5, Pro6, Ser7] is phosphorylated at Ser5. This antibody does not cross-react with Rpb1 CTD phosphorylated at Ser2 or Ser7. Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb recognizes endogenous levels of Rpb1 only when the carboxy-terminal domain (CTD) heptapeptide repeat [Tyr1, Ser2, Pro3, Thr4, Ser5, Pro6, Ser7] is dually phosphorylated at Ser2 and Ser5. This antibody does not cross-react with Rpb1 CTD that is singly phosphorylated at Ser2, Ser5, or Ser7. Phospho-Rpb1 CTD (Ser7) (E2B6W) Rabbit mAb recognizes endogenous levels of Rpb1 protein only when the carboxy-terminal domain (CTD) heptapeptide repeat [Tyr1, Ser2, Pro3, Thr4, Ser5, Pro6, Ser7] is phosphorylated at Ser7. This antibody does not cross-react with Rpb1 CTD phosphorylated at Ser2 or Ser5.
性能
供应商CST
背景RNA polymerase II (RNAPII) is a large multi-protein complex that functions as a DNA-dependent RNA polymerase, catalyzing the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1). The largest subunit, RNAPII subunit B1 (Rpb1), also known as RNAPII subunit A (POLR2A), contains a unique heptapeptide sequence (Tyr1,Ser2,Pro3,Thr4,Ser5,Pro6,Ser7), which is repeated up to 52 times in the carboxy-terminal domain (CTD) of the protein (1). This CTD heptapeptide repeat is subject to multiple post-translational modifications, which dictate the functional state of the polymerase complex. Phosphorylation of the CTD during the active transcription cycle integrates transcription with chromatin remodeling and nascent RNA processing by regulating the recruitment of chromatin modifying enzymes and RNA processing proteins to the transcribed gene (1). During transcription initiation, RNAPII contains a hypophosphorylated CTD and is recruited to gene promoters through interactions with DNA-bound transcription factors and the Mediator complex (1). The escape of RNAPII from gene promoters requires phosphorylation at Ser5 by CDK7, the catalytic subunit of transcription factor IIH (TFIIH) (2). Phosphorylation at Ser5 mediates the recruitment of RNA capping enzymes, in addition to histone H3 Lys4 methyltransferases, which function to regulate transcription initiation and chromatin structure (3,4). After promoter escape, RNAPII proceeds down the gene to an intrinsic pause site, where it is halted by the negative elongation factors NELF and DSIF (5). At this point, RNAPII is unstable and frequently aborts transcription and dissociates from the gene. Productive transcription elongation requires phosphorylation at Ser2 by CDK9, the catalytic subunit of the positive transcription elongation factor P-TEFb (6). Phosphorylation at Ser2 creates a stable transcription elongation complex and facilitates recruitment of RNA splicing and polyadenylation factors, in addition to histone H3 Lys36 methyltransferases, which function to promote elongation-compatible chromatin (7,8). Ser2/Ser5-phosphorylated RNAPII then transcribes the entire length of the gene to the 3 end, where transcription is terminated. RNAPII dissociates from the DNA and is recycled to the hypophosphorylated form by various CTD phosphatases (1).
运输条件0.75
存放说明-20C
参考文献Brookes, E. and Pombo, A. (2009) EMBO Rep 10, 1213-9.
Komarnitsky, P. et al. (2000) Genes Dev 14, 2452-60.
Ho, C.K. and Shuman, S. (1999) Mol Cell 3, 405-11.
Ng, H.H. et al. (2003) Mol Cell 11, 709-19.
Cheng, B. and Price, D.H. (2007) J Biol Chem 282, 21901-12.
Marshall, N.F. et al. (1996) J Biol Chem 271, 27176-83.
Krogan, N.J. et al. (2003) Mol Cell Biol 23, 4207-18.
Proudfoot, N.J. et al. (2002) Cell 108, 501-12.
Chapman, R.D. et al. (2007) Science 318, 1780-2.
Egloff, S. et al. (2007) Science 318, 1777-9.
Egloff, S. et al. (2008) Biochem Soc Trans 36, 590-4.
Baillat, D. et al. (2005) Cell 123, 265-76.
Akhtar, M.S. et al. (2009) Mol Cell 34, 387-93.
Egloff, S. et al. (2010) J Biol Chem 285, 20564-9.
Egloff, S. et al. (2012) Mol Cell 45, 111-22.
参考图片
After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.
Chromatin immunoprecipitations were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 μl of Phospho-Rpb1 CTD (Ser2) (E1Z3G) Rabbit mAb or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human β-Actin Promoter Primers #13653, human β-Actin intron 1 primers, SimpleChIP® Human β-Actin 3 UTR Primers #13669, and SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.
Chromatin immunoprecipitations were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 μl of Phospho-Rpb1 CTD (Ser5) (D9N5I) Rabbit mAb or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human β-Actin Promoter Primers #13653, human β-Actin intron 1 primers, SimpleChIP® Human β-Actin 3 UTR Primers #13669, and SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.
Chromatin immunoprecipitations were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 μl of Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human β-Actin Promoter Primers #13653, human Β-Actin intron 1 primers, SimpleChIP® Human β-Actin 3 UTR Primers #13669, and SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.
Western blot analysis of extracts from C2C12, H-4-II-E, and COS-7 cells using Phospho-Rpb1 CTD (Ser5) (D9N5I) Rabbit mAb.
Western blot analysis of extracts from C2C12, H-4-II-E, and COS-7 cells using Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb.
Immunoprecipitation of Rpb1 from HeLa cell extracts using Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (lane 2) or Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb (lane 3). Lane 1 is 10% input. Western blot analysis was performed using Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb.
Immunoprecipitation of Rpb1 from HeLa cell extracts using Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (lane 2) or Phospho-Rpb1 CTD (Ser5) (D9N5I) Rabbit mAb (lane 3). Lane 1 is 10% input. Western blot analysis was performed using Phospho-Rpb1 CTD (Ser5) (D9N5I) Rabbit mAb.
Immunoprecipitation of Rpb1 from HeLa cell extracts using Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (lane 2) or Phospho-Rpb1 CTD (Ser2) (E1Z3G) Rabbit mAb (lane 3). Lane 1 is 10% input. Western blot analysis was performed using Phospho-Rpb1 CTD (Ser2) (E1Z3G) Rabbit mAb.
Western blot analysis of extracts from C2C12, H-4-II-E, and COS-7 cells using Phospho-Rpb1 CTD (Ser2) (E1Z3G) Rabbit mAb.
Western blot analysis of extracts from various cell lines using Phospho-Rpb1 CTD (Ser7) (E2B6W) Rabbit mAb.
Immunoprecipitation of Rpb1 from HeLa cell extracts using Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (lane 2) or Phospho-Rpb1 CTD (Ser7) (E2B6W) Rabbit mAb (lane 3). Lane 1 is 10% input. Western blot analysis was performed using Phospho-Rpb1 CTD (Ser7) (E2B6W) Rabbit mAb.
Chromatin immunoprecipitations were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 μl of Phospho-Rpb1 CTD (Ser7) (E2B6W) Rabbit mAb or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using human β-Actin upstream primers, SimpleChIP®Human β-Actin 3 UTR Primers #13669, human RNU2 primers, and SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.
Western blot analysis of extracts from HeLa, KNRK, and COS-7 cells using Rpb1 NTD (D8L4Y) Rabbit mAb.
Chromatin immunoprecipitations were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 μl of Rpb1 NTD (D8L4Y) Rabbit mAb or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human GAPDH Exon 1 Primers #5516, SimpleChIP® Human γ-Actin Promoter Primers #5037, SimpleChIP® Human AFM1 Intron 1 Primers #5098, and SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.