一抗

克隆类型
多抗单抗
产品类型
标签抗体磷酸化抗体内参抗体甲基化抗体乙酰化抗体药物与化合物抗体植物抗体
研究领域
肿瘤心血管细胞生物免疫学发育生物学染色质和核信号微生物学细胞凋亡信号转导干细胞神经生物学生长因子和激素糖尿病内分泌病转运蛋白植物细菌及病毒转录调节因子海洋生物上皮细胞趋化因子结合蛋白细胞表面分子G蛋白偶联受体胶原蛋白糖蛋白交换蛋白细胞分化血管内皮细胞细胞类型标志物内皮细胞淋巴细胞T-淋巴细胞B-淋巴细胞细胞粘附分子肿瘤细胞生物标志物骨髓细胞细胞骨架跨膜蛋白细胞因子自然杀伤细胞树突状细胞标志物脂蛋白新陈代谢锌指蛋白通道蛋白细胞周期蛋白激酶和磷酸酶昆虫线粒体环指蛋白细胞自噬细胞膜受体药物及化合物泛素干扰素G蛋白信号细胞膜蛋白Alzheimers表观遗传学细胞外基质合成与降解

标记一抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

二抗

克隆类型
多抗单抗
产品分类
二抗二抗血清

标记二抗

标记类型
HRPBiotinGoldRBITCAPFITCCy3Cy5Cy5.5Cy7PEPE-Cy3PE-Cy5PE-Cy5.5PE-Cy7APCAlexa Fluor 350Alexa Fluor 488Alexa Fluor 555Alexa Fluor 594Alexa Fluor 647

蛋白质与多肽

产品分类
蛋白质多肽

标记蛋白质与多肽

所有产品
全部标记蛋白质与多肽

正常动物血清及免疫球蛋白

产品分类
正常动物血清免疫球蛋白

试剂盒

产品分类
ELISA试剂盒

常用试剂

产品分类
免疫组化常用试剂免疫印迹常用试剂常用显色试剂细胞生物学试剂分子生物学生化试剂

亲和层析柱

所有产品
亲和层析柱

配套试剂

所有产品
常用配套试剂

ELISA试剂盒

人ELISA试剂盒 大鼠ELISA试剂盒 小鼠ELISA试剂盒 牛ELISA试剂盒 鸡ELISA试剂盒 植物ELISA试剂盒 猴ELISA试剂盒 猪ELISA试剂盒 山羊ELISA试剂盒 马ELISA试剂盒 仓鼠ELISA试剂盒 绵羊ELISA试剂盒 兔子ELISA试剂盒 犬ELISA试剂盒 豚鼠ELISA试剂盒 其他ELISA试剂盒

生化试剂

色素类 分离材料及耗材 维生素 染色剂 碳水化合物 植物激素及核酸 抗生素 蛋白质 氨基酸 测试盒 其他生物试剂 缓冲剂 表面活性剂

血浆

血浆

血清

Sigma胎牛血清 gibco胎牛血清 Hyclone血清 人血清 国产新生牛血清 国产胎牛血清 其他血清

细胞

其它细胞 仓鼠细胞 猴细胞 大鼠细胞 人细胞 狗细胞 小鼠细胞 猫细胞 鸡细胞

标准品

对照品 农药标准品 标准物质 食品 无机溶液标准物质 有机溶液标准物质

抗体

兔抗 鼠抗 IgY抗体 IgA抗体 IgG抗体 二抗 一抗

裂解血

裂解血

培养基

美国药典培养基 化妆品检验培养基 大肠杆菌、大肠菌群 金黄色葡萄球菌检验 消毒灭菌效果评价 临床检验用培养基 中华人民共和国药典 欧洲药典(EP) 饮用天然矿泉水检验方法 微生物检验 霉菌、酵母菌 肠球菌、链球菌 沙门氏菌、志贺氏菌 弧菌 弯曲杆菌 李斯特氏菌 产气荚膜梭菌 阪崎肠杆菌 乳酸菌、双歧杆菌 小肠结肠炎耶尔森氏菌 蜡样芽孢杆菌检验 小肠结肠炎耶尔森氏菌检验 一次性试管、液体培养基 乳酸菌检验 菌落总数测定、无菌检验 显色培养基 植物组培

产品中心

当前位置:首页>产品中心

Anti-Phospho-P38 MAPK (Thr180 + Tyr182)

货号: bs-0636R 基本售价: 1580.0 元 规格: 100ul

产品信息

产品编号
bs-0636R
英文名称
Phospho-P38 MAPK (Thr180 + Tyr182)
中文名称
磷酸化-丝裂原活化蛋白激酶p38抗体(P-p38 MAPK)
别    名
P38 MAPK(Phospho-Thr180); phospho-MAPK14(Thr180/Tyr182); MAPK14(phospho Thr180/Tyr182); CSAID Binding Protein 1; CSAID binding protein; CSAID-binding protein; Csaids binding protein; CSBP 1; CSBP 2; CSBP; CSBP1; CSBP2; CSPB 1; CSPB1; Cytokine suppressive anti inflammatory drug binding protein; Cytokine suppressive anti-inflammatory drug-binding protein; EXIP; MAP kinase 14; MAP kinase MXI2; MAP kinase p38 alpha; MAPK 14; MAPK14; MAX interacting protein 2; MAX-interacting protein 2; Mitogen Activated Protein Kinase 14; Mitogen activated protein kinase p38 alpha; Mitogen-activated protein kinase 14; Mitogen-activated protein kinase p38 alpha; MK14_HUMAN; Mxi 2; Mxi2; p38 ALPHA; p38; p38 MAP kinase; p38 MAPK; p38 mitogen activated protein kinase; p38ALPHA; p38alpha Exip; PRKM14; PRKM15; RK; SAPK 2A; SAPK2A; Stress Activated Protein Kinase 2A.  
Specific References  (1)     |     bs-0636R has been referenced in 1 publications.
[IF=4.26] Rosenzweig, Derek H., et al. "Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis." Osteoarthritis and Cartilage (2012).  WB ;  Bovine.  
PubMed:22935788
规格价格
100ul/1580元购买        大包装/询价
说 明 书
100ul  
产品类型
磷酸化抗体 
研究领域
肿瘤  细胞生物  免疫学  信号转导  细胞凋亡  转录调节因子  激酶和磷酸酶  
抗体来源
Rabbit
克隆类型
Polyclonal
交叉反应
Human, Mouse, Rat, Dog, Rabbit, 
产品应用
WB=1:500-2000 ELISA=1:500-1000 IHC-P=1:400-800 IHC-F=1:400-800 Flow-Cyt=1μg/Test ICC=1:100-500 IF=1:100-500 (石蜡切片需做抗原修复)
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量
42kDa
细胞定位
细胞核 细胞浆 
性    状
Lyophilized or Liquid
浓    度
1mg/ml
免 疫 原
KLH conjugated Synthesised phosphopeptide derived from human p38 MAPK around the phosphorylation site of Thr180/Tyr182:M(p-T)G(p-Y)VA 
亚    型
IgG
纯化方法
affinity purified by Protein A
储 存 液
0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存条件
Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
PubMed
PubMed
产品介绍
background:
The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases(MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.

Function:
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on Ser-10 (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at Thr-113.

Subunit:
Binds to a kinase interaction motif within the protein tyrosine phosphatase, PTPRR (By similarity). This interaction retains MAPK14 in the cytoplasm and prevents nuclear accumulation. Interacts with SPAG9 and GADD45A. Interacts with CDC25B, CDC25C, DUSP1, DUSP10, DUSP16, NP60, FAM48A and TAB1. Interacts with casein kinase II subunits CSNK2A1 and CSNK2B.

Subcellular Location:
Cytoplasm. Nucleus.

Tissue Specificity:
Brain, heart, placenta, pancreas and skeletal muscle. Expressed to a lesser extent in lung, liver and kidney.

Post-translational modifications:
Dually phosphorylated on Thr-180 and Tyr-182 by the MAP2Ks MAP2K3/MKK3, MAP2K4/MKK4 and MAP2K6/MKK6 in response to inflammatory citokines, environmental stress or growth factors, which a ctivates the enzyme. Dual phosphorylation can also be mediated by TAB1-mediated autophosphorylation. TCR engagement in T-cells also leads to Tyr-323 phosphorylation by ZAP70. Dephosphorylated and inactivated by DUPS1, DUSP10 and DUSP16.
Acetylated at Lys-53 and Lys-152 by KAT2B and EP300. Acetylation at Lys-53 increases the affinity for ATP and enhances kinase activity. Lys-53 and Lys-152 are deacetylated by HDAC3.
Ubiquitinated. Ubiquitination leads to degradation by the proteasome pathway.

Similarity:
Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.
Contains 1 protein kinase domain.

SWISS:
Q16539

Gene ID:
1432

Database links:

Entrez Gene: 1432Human

Entrez Gene: 26416Mouse

Entrez Gene: 81649Rat

Entrez Gene: 403856Dog

GenBank: NM_001315Human

GenBank: NM_139012Human

GenBank: NM_011951Mouse

GenBank: NM_031020Rat

Omim: 600289Human

SwissProt: O02812Dog

SwissProt: Q16539Human

SwissProt: P47811Mouse

SwissProt: P70618Rat

Unigene: 485233Human

Unigene: 311337Mouse

Unigene: 88085Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.

激酶和磷酸酶(Kinases and Phosphatases)
丝裂原活化蛋白激酶p38(p38 MAPK、磷酸化pERK)参与细胞生长、增殖、分化、死亡及细胞间的功能同步等多种生理过程.
P-p38MAPK是丝裂原活化蛋白激酶家族中的成员之一,大量研究显示p38在能量代谢中具有广泛的作用。p38参与脂肪组织、骨骼肌、胰岛细胞和肝脏等组织、器官的能量代谢.分子量:38KDa
p38 MAPK:作为细胞信号传递系统的交汇点,细胞内普遍存在的一条信号转导通路。细胞外的物理应激因子,如高渗透压、热休克、紫外线以及细胞因子、内毒素脂多糖(LPS)等都能激活该途径,诱导细胞内蛋白质合成与分泌、细胞分化及凋亡等生物效应。p38 MAPK还能与细胞内其他信号通路之间相互作用,是细胞内信号传递系统的交汇点或共同通路。p38 MAPK一旦被激活后,可以使一些转录因子如CREB、转录活化因子-1(activating factor-1, ATF-1)、ATF-2及活化蛋白-1(AP-1)等的丝氨酸和苏氨酸位点磷酸化,活化这些转录因子,从而调节目的基因的表达。 p38(丝氨酸位点)磷酸化后可以直接激活转录因子,参与机体的应激反应。
产品图片
Sample:
Muscle (Mouse) Lysate at 40 ug
Muscle (Rat) Lysate at 40 ug
Primary: Anti-Phospho-P38 MAPK (Thr180 + Tyr182) (bs-0636R) at 1/300 dilution
Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution
Predicted band size: 42 kD
Observed band size: 42 kD
Paraformaldehyde-fixed, paraffin embedded (rat brain tissue); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (P-P38 MAPK) Polyclonal Antibody, Unconjugated (bs-0636R) at 1:400 overnight at 4°C, followed by a conjugated secondary (sp-0023) for 20 minutes and DAB staining.
Tissue/cell: mouse brain tissue; 4% Paraformaldehyde-fixed and paraffin-embedded;
Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min;
Incubation: Anti-P38 MAPK(Phospho-Thr180/Tyr182) Polyclonal Antibody, Unconjugated (bs-0636R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Tissue/cell: human placenta tissue; 4% Paraformaldehyde-fixed and paraffin-embedded;
Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min;
Incubation: Anti-P38 MAPK(Phospho-Thr180/Tyr182) Polyclonal Antibody, Unconjugated (bs-0636R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Tissue/cell: rat brain tissue; 4% Paraformaldehyde-fixed and paraffin-embedded;
Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min;
Incubation: Anti-P38 MAPK(Phospho-Thr180/Tyr182) Polyclonal Antibody, Unconjugated (bs-0636R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Blank control: HepG2(blue).
Primary Antibody:Rabbit Anti-Phospho-P38 MAPK (Thr180 + Tyr182)antibody (bs-0636R,Green); Dilution: 1μg in 100 μL 1X PBS containing 0.5% BSA;
Isotype Control Antibody: Rabbit IgG(orange) ,used under the same conditions;
Secondary Antibody: Goat anti-rabbit IgG-FITC(white blue), Dilution: 1:200 in 1 X PBS containing 0.5% BSA.
Protocol
The cells were fixed with 2% paraformaldehyde for 10 min at 37℃. Primary antibody (bs-0636R, 1μg /1x10^6 cells) were incubated for 30 min at room temperature, followed by 1 X PBS containing 0.5% BSA + 1 0% goat serum (15 min) to block non-specific protein-protein interactions. Then the Goat Anti-rabbit IgG/FITC antibody was added into the blocking buffer mentioned above to react with the primary antibody at 1/200 dilution for 40 min at room temperature. Acquisition of 20,000 events was performed.